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Abstract

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed
spaces . P-norms and p-HH norms induces the same topology, so they are equivalent, but geometri-
cally they are different. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality
and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities.
In this paper, we test the concept of 2-HH norm to Birkhoff and a new orthogonality in normed
spaces and discuss some properties of these orthogonalities.
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1 Introduction

An inner-product on X defines a norm on X by ||:1:||2 = (z,z). Every innerproduct spaces are
normed spaces, but the converse may not be true. A best example of normed space which is not an
inner-product space is I* = {(x,),x, € R: Y |z,| < oo} for p # 2.

Definition. The p — HH norm on X? = X x X is defined by

Il = (10 = )2+ 1yl

for any z,y € X? and 1 < p < oo.

The 2-HH norm is defined as follows:

1
)1 = [ 101 =)0+t
1
= 2P + {o.9) + ol

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:
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Definition. [12] For any convex function f : [a,b] — R([a,b] C R, the Hermite-Hadamard’s
inequality is defined as

v-as 3 < [ o< oo [ 1O

. This inequality has been extended (see-12) for convex function f : [z,y] — R, where [z,y] =
{(1 —t)x +ty,t € [0,1]}. In that case Hermite-Hadamards integral inequality becomes

;;yg/of[(l—t)x—kty]dtgw ...... (1).

T

i

Using the convexity of f(x) = ||z||” (x € X,p > 1) and relation (1) we have

1
T4y ! p_ 1 1
<[ 1=t v wra]” < el e
0 P

1.1 HH-P Orthogonality

Definition. [3, 4] A vector x is said to be orthogonal to y in the sense of Pythagorean if ||z — y||* =
lz* + llylI”.

[8] Let (X, ]|.]|) be a normed space. Then z L gy py <= fol (1 — B+ ty|)* dt = (=] +|y]*)-

1.1.1 Properties of HH-P orthogonality

1. HH-P orthogonality satisfies non-degeneracy, simplification, continuity and symmetry.
2. HH-P orthogonality is existent.

3. HH-P orthogonality is unique.

4. HH-P orthogonality is homogeneous if and only if the space is inner-product space.

5. HH-P orthogonality is additive if the space is an inner-product space.

1.2 HH-I orthogonality

Definition. [5] A vector x is said to be isosceles orthogonal to y if ||z — y|| = ||z + y||.

[8] Let x,y € X such that |[(1 — )z + ty|| = ||(1 — t)z — ty|| a.e. on [0,1]. Then x is said to be
HH-I orthogonal to y iff

1 1
/ ||(1—t)x+ty||dt:/ |(1 —t)x — ty|| dt.
0 0
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1.2.1 Properties of HH-I Orthogonality

1. The HH-I orthogonality satisfies non-degeneracy, simplification, continuity and symmetry
properties.

2. HH-I orthogonality is existent.
3. If HH-I orthogonality is homogeneous in a normed space X, then X is an inner-product space.
4. If HH-I orthogonality is additive, then the space is an inner-product space.

5. HH-T orthogonality is neither right additive nor homogeneous.

Definition. [2] In a normed linear space X,
rly &> alber + eyl =0,
k=1

where m > 2 and ag, by, ¢ are real numbers such that

m m m

akbkck 7é 0, akbk = aiC, = 0
2 D ab =) ad

1.3 HH-C Orthogonality

[8] Let (X, .]]) be a normed space and t € [0,1]. then z € X is said to be HH-C orthogonal to to
y € X if and only if

m 1
S, / 11— )52 + ]l = 0
j=1 0

satisfying the conditions
Zozjﬁj'yj #0 and Z a;8J)° = Zozj%? =0.
j=1 j=1 j=1

HH-P orthogonality is a particular case of HH-C orthogonality
Let us take

3 1
Sy [ 0= 080+ gl =0
=1 70

1 2 1
:>a1/ ||(1—t)61x+t'yly||2dt+a2/ ||(1—t)52x+t72y||2dt+a3/ ||(1—t)53x+t73y||2dt:0
0 0 0
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Taking a; = -1, as =a3 =1, 51 =02 =1, f3=0,7 =v3 =1 and , = 0, we get
1 1 1
—/Hﬂ—mﬁwWﬁ+/Hﬂ—mWﬁ+/HwWﬁ—O
0 0 0
! 2 1 2 2
=¢—/HU—0w+WHﬁ+§WNHM|=0
0

1
1
I =+ P = S0l + ol

Now

k=1

and Z aY; = ary; + agys + asy; =0
j=1

Which shows that HH-P orthogonality is a particular case of HH-C orthogonality.

HH-I orthogonality is a particular case of HH-C orthogonality
Let us take

2 1
oy [ =08+t =0
j=1 70

1
:>a1/ II(1 —t)ﬁla:+t71y||2dt+a2/ II(1 —t)ﬁgx—i—tfygyﬂzdt =0
0 0

Taking ay = %,O_fz = _71,61 =0B=1,71=1,7 = —1, we get

1 [t 1!
5 [ Ia=te+wtae— 3 [ 0= 00— wi*a =0
0 0

1 1
:/Hu—mwme:/Hu—mwwWﬁ
0 0

Now

2 2
Y aiBi=mfimtabre=1 Y af =af+ b =0

k=1 k=1

2
and Z ozﬂ]? =17+ a7 =0
k=1

1.3.1 Properties of HH-C orthogonality

1. HH-C orthogonality satisfies non-degeneracy, simplification , and continuity property.

2. HH-C orthogonality is not symmetric.

3. HH-C orthogonality is neither additive nor homogeneous.
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2 Main Result

Definition. [11] A vector x is orthogonal to y if
2

1
T+ syl +

2

x——yH H\/_x—l—yH +||x||

Lemma 2.1. For an abstract Euclidean Space X, orthogonality relation Ha: + %y”2 + Hx — %yHQ
3 H\/ﬁx + yH2 + ||z||* implies Birkhoff orthogonality if y = =

Proof. Suppose x1y. Then by definition,
2

1
TH 5yl + x——y H\/—eryH + ||z|?
L e = Ll s e
T — xr — — T
29 2y =
o LI s e
rHoy—rtgy| 2l
2 2
= gl 2 flf? o (1)

Since y = %= so that y = v + ay. Therefore form the relation (1)
lz + ay|* > ||
= [z +ayll = |||
= ZL'_LBy
O

But the converse of above lemma may not be true. Consider X = (R?, ||.||,), where |.||, =
S22 || for some x = (21, 22) € X. Let x = (=2,1),y = (2,2). and o € R we have

le+ayll, =112, 1) +a2,2)l, =[-2+2a,1+2af, =[-2+2a[+[1+2a] =3 = [z,
But
x+ly 2+ x—ly :H(—2,1)+1(2,2) 2+H(—2,1)—1(2,2) 2
2 2 2 2
=[1(=2.1) + (L DI* + [[(=2,1) = (1, D]

=18

S [Vae o + el = 5 Va2 + @) + -2 e
o] G CRERERR] [N

1
= 5(0.828 + 3.4142)* 4+ 9
=17.99

which shows that x is not orthogonal to y in the sense of above orthogonality.
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3 Birkhoff Orthogonality Via 2-HH norm

Definition. [6, 9] A vector x is said to be orthogonal to y in the sense of Birkhoff if ||z|| < ||z 4+ ay||
for all a € R.

In the case of 2 — HH norm,
1
/ (1 =)z + Mty / (1 —=t)x+ My, (1 — t)x + Aty)dt

t 1
2 / £)2dt + 2M\(a, y>/ t(l—t)dt+)\2|]y\|2/ £2dt.
0 0

If x1, then
[ 1=l —uxn/ i+ X ol [
=l ) ()
But fy (1 = )el*de = ||«lf” fy (1= 0)%de = 3|2l . (2)

Since || Ay||* is a non-negative quantity, so from relation (1) and (2), we conclude that

/OH(l—t)er)\tszz/o lC=Dz|?dt. o (3)

Keeping the above result in our mind, we can conclude that x1, — HH(B)y if the relation (3) is
satisfied.

4 New Orthogonality Via 2-HH Norm

[11] A vector x € X is said to be orthogonal to the vector y € Y if and only if

2

1
T+ syl +

2

x — —yH H\/_x—l—yH + Hx||

Using the concept of 2 — HH norm,

L1 1
T+ = x— =
2 Y

and we obtain a definition of new orthogonality by using 2-HH norm is as follows: xly iff

1 2 1
/ i+ |
0 0

1 2
+ =3 H\/éx + yH + ||lz||* a.e on [0, 1]

1
(1—t)x+ §ty (1—t)x — —ty

1—tx—i—tyH dt+/ (1 — )z dt.
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To verify the above definition, the left hand side of relation (1)

1 1
/ at+ [
0 0

2 2

1 1
(1—t)x+ §ty (1—t)x— §ty

! 1 1
it — / (0= 1)+ oty (1=t + Sty)ds
0

! 1 1
+/ ((1-— t)x — —ty, (1 —t)x — —ty)dt
g 2 2
1
=—||90|| +35 ||y|| +3 ||50|| + 13 ||?J||
= 2 +6HZ/H .

Again the right hand side of relation (1)
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